Archaeological investigations in the Niah Caves, Sarawak
Edmund Kurui (4 June 1952 – 17 January 2006),
Niah 2001
Archaeological investigations in the Niah Caves, Sarawak

Edited by Graeme Barker and Lucy Farr

with contributions from

The archaeology of the Niah Caves, Sarawak
Volume 2

Sarawak Museums
# Contents

Contributors iii
Figures xvi
Tables xxiv
Preface and Acknowledgements xxix

## Part I  Introduction

### Chapter 1  The Niah Caves Project: the Archaeological Context in 2000

Graeme Barker and Tim Reynolds

- Introduction 3
- The Harrisson and Zuraina Majid excavations 5
- The condition of the archaeological sites in 2000 8
- Linking the old and new excavations 12
- Conclusion 16

## Part II  Field Studies

### Chapter 3  The NCP Excavations in the West Mouth

Tim Reynolds, Lindsay Lloyd-Smith, Lucy Farr and Graeme Barker

- Introduction 31
- Field methodologies 31
- Results of the NCP work in the West Mouth 40

### Chapter 4  The NCP Excavations in Lobang Hangus, Lobang Tulang, Gan Kira and Kain Hitam

Philip Piper, Helen Lewis, Tim Reynolds, Sue McLaren, Ryan Rabett, Franca Cole, Katherine Szabó, Lucy Farr and Graeme Barker

- Introduction 65
- Lobang Hangus 65
- Lobang Tulang 76
- Gan Kira 77
- Kain Hitam 78

### Chapter 5  The Sedimentology of the West Mouth Lithofacies

Mark Stephens, Chris Hunt, James Rose, David Gilbertson, Sue McLaren, John Grattan, Garry Rushworth and Alan Dykes

- Introduction 81
- The West Mouth exposures and their physical properties 81
- Sediment micromorphology 94
- Synthesis and conclusion 101
- Acknowledgements 104
Chapter 6  Soil Micromorphological Study of Cultural Sediments in the Niah Caves

Helen Lewis

Introduction 105
Sampling and methods 105
Micromorphology of occupation deposits 107
Kain Hitam 119
Lobang Hangus 120
Cultural sediments at Niah: general characteristics 121
Cultural activities at the Niah Caves 124
Conclusion 125
Acknowledgements 126

Part III  Environment

Chapter 7  The Changing Landscape of Sundaland: the Geography of Coastal Northern Borneo from the Last Glacial Maximum to the Present

David Gilbertson, Sue McLaren, Mark Stephens, Chris Hunt, James Rose, John Grattan, Michael Bird, Helen Lewis and Richard Mani Banda

Introduction 129
Holocene linear coastal sand barriers at the mouth of the Sungai Niah 132
The coastal alluvium north of the Great Cave: lithology and palynology 133
Bore-hole surveys and palynological studies at Loagan Bunut 135
Seismic stratigraphy and palaeogeography on the continental shelf of the Baram delta, c. 21,000–4000 BP 140
The palaeotopography of the exposed continental shelf 143
Synthesis 146

Chapter 8  Palynology, Phytoliths, Diatoms and Wood in the West Mouth: Stratigraphic and Taphonomic Studies of Late Quaternary Vegetation History

Chris Hunt, Lisa Kealhofer, Rathnasiri Premathilake, Garry Rushworth, David Gilbertson, Samantha Jones and Gill Thompson

Introduction 149
The research context 150
The forests of Borneo 150
Methodologies 152
Pollen taphonomy 153
Phytolith taphonomy 160
Stratigraphic studies 160
Relating pollen stratigraphy to lithostratigraphy and chronology 163
Pleistocene vegetation and climate 167
Holocene vegetation and climate 170
Humans and plants 174
Conclusion 175
Acknowledgements 176

Chapter 9  Stable Isotope Analysis of Shells from the West Mouth: Palaeoenvironments, Seasonality, and Harvesting

Mark Stephens, James Rose, David Matey and David Gilbertson

Introduction 177
Palaeoenvironmental reconstruction from mollusc shells using stable isotopes 178
Stable isotopes and the hydrological cycle in the tropics 180
Methods 182
Stable isotopic variation of waters in the Niah River catchment 186
Stable isotopic analyses of modern shells from the Niah River catchment 189
Stable isotopic analyses of shells from archaeological deposits in the West Mouth 192
Conclusion 200
Acknowledgements 200
Chapter 10  The Atmospheric Environment of the West Mouth and its Human, Geomorphic and Archaeological Implications  
Brian Pyatt, Gavin Gillmore, John Grattan, Matthew Ivers, David Gilbertson and Paul Phillips

Introduction  201
Ammonia  201
Atmospheric particulates  206
Radon  206
Conclusion  210

Chapter 11  Modern Invertebrate Populations in the West Mouth  
Chris Terrell-Nield and Brian Pyatt

Introduction  211
The species found  211
Discussion  215
Conclusion  216

Part IV  Dating
Chapter 12  Radiocarbon Dating  
Tom Higham, Lindsay Lloyd-Smith, Huw Barton, Fiona Brock and Chris Turney

Introduction  219
The NCP radiocarbon dating programme: methods  219
Charcoal dates from the NCP excavations  222
Charcoal dates from the Harrisson Excavation Archive  228
Dating the West Mouth cemetery  228
Conclusion  232

Chapter 13  Uranium-Series Dating of the Niah ‘Deep Skull’  
Alistair Pike

Introduction  233
Methods and results  233
Discussion  233

Chapter 14  Optical Dating of Sediments from the West Mouth  
Mark Stephens, Richard Roberts and Olav Lian

Introduction  235
Sample collection  236
Results  236
Discussion  240
Conclusion  241
Acknowledgements  242

Chapter 15  Amino-Acid Racemization Analysis of Shells from the West Mouth  
Mark Stephens and Colin Murray-Wallace

Introduction  243
AAR dating in the tropics  243
Methods  244
Results and discussion  246
Conclusions  247
## Part V  Material Culture

### Chapter 16  Lithic Technologies: the West Mouth and Lobang Hangus Assemblages

**Tim Reynolds**

- Introduction 251
- Lithic categories and sequence: Tom Harrisson 251
- Lithic categories and sequence: Zuraina Majid 252
- The NCP study: methodologies 253
- Struck material 253
- Blanks 256
- Raw materials 256
- Techno-typology 257
- Function 259
- Lobang Hangus flaked material 262
- Discussion 263
- Conclusion 265
- Acknowledgement 265

### Chapter 17  Functional Analysis of Stone Tools from the West Mouth

**Huw Barton**

- Introduction 279
- Methodology 279
- Flaked stone 280
- Mortars, pounders, rubbers and ground stone 288
- Discussion 296
- Acknowledgements 297

### Chapter 18  Bone and Tusk Tools from the West Mouth and Lobang Hangus

**Ryan Rabett**

- Introduction 301
- Methodologies 301
- Bone and tusk tools from the West Mouth 302
- Bone and tusk tools from Lobang Hangus 317
- ‘Pseudo-tools’ 320
- Discussion 322
- Conclusion 324

### Chapter 19  Worked Shell from the Niah Caves

**Katherine Szabó**

- Introduction 325
- Identification and recording 325
- Formal shell artefacts and valuables 326
- Expedient tools and utilized valves 327
- Niah shell-working in regional context 327

### Chapter 20  Earthenware Ceramics, Chronology and Use at Niah c. 2800–500 BP (c. 800 BC–AD 1500)

**Franca Cole**

- Introduction 329
- Previous research 329
- Methodology 331
- Ceramic technology 332
- Chronology 337
- Use 342
- Conclusion 344
### Chapter 21  Archaeological Textiles from the Niah Caves
**Judith Cameron**

- Introduction: 345
- Definitions: 345
- Preservation conditions: 345
- Basketry: 346
- Matting: 348
- Textiles: 351
- Cordage: 355
- Ethnography and ethnohistory: 356
- Discussion: 356

### Chapter 22  Archaeological ‘Dammar’ Resins from the West Mouth
**Fiona Bradshaw, Ben Stern and Gill Thompson**

- Introduction: 363
- Background: 364
- The resin samples: 366
- Results: 368
- Discussion: 370
- Acknowledgements: 372

### Part VI  Bioarchaeology

### Chapter 23  Reclassifying the Later Prehistoric Burials in the West Mouth
**Lindsay Lloyd-Smith**

- Introduction: 375
- The West Mouth burial series and archive: 376
- The Harrisson burial classification system: 377
- Reclassification: 378
- Discussion: 391
- Conclusion: 391
- Acknowledgements: 392

### Chapter 24  The Physical Anthropology of the West Mouth Human Burials
**Jessica Manser**

- Introduction: 393
- Datasets and methods: 394
- The Niah population: 394
- Regional comparisons: 398
- Conclusion: 400

### Chapter 25  Vertebrate Fauna from the Niah Caves
**Philip Piper and Ryan Rabett**

- Introduction: 401
- Previous studies: 402
- Recovery methods: 403
- Methodologies: 405
- The bone assemblages: 405
- Hunting strategies: 432
- Conclusion: 437

### Chapter 26  Bird and Bat Bones from the West Mouth: Taphonomic Assessment
**Christopher Stimpson**

- Introduction: 439
- Epigean birds: 439
- Trogloxenes: swiftlets and bats: 440
- Conventions, materials and methods: 440
- Results: 445
- Conclusion: 454
Chapter 5  1. Descriptions of Exposures in the Northern Part of the West Mouth
Sue McLaren, Mark Stephens, David Gilbertson, Chris Hunt, Michael Bird
and Richard Mani Banda
Hell Trench, Section 1.2(2000)  S21
Hell Trench, Section 1.3(2000)  S21
Hell Trench, Section 1.4(2000)  S22
Area B, Section 2.1  S23
Area A, Section 3.2(2000)  S23
Area C, Section 5.2  S24
Area C, Section 6.2  S24
Hell Trench, Section 7.1(2000)  S24
Area B, Section 8.1  S26
Area B, Section 13.1  S28
Hell Trench, Section 18.1  S30
Area A, Section 22.7  S30
Hell Trench, Section 26.2  S31
Area A, Section 35.1  S32
Area D, Section 36.3  S34
Hell Trench, Section 42.4  S34
Area C, Section 60.1  S36
Un-numbered exposures in cave entrance gully: debris flows (DF)  S37
Exposures in guano pile  S37

Chapter 5  2. Geotechnical Studies of Lithofacies 3
Alan Dykes
Introduction  S41
Mass movement processes  S42
Methods  S43
Results  S43
Discussion  S45
Conclusion  S47

Chapter 6  Detailed Descriptions of the Thin Sections
Helen Lewis
West Mouth Areas A and B occupation layers, pit fills, ashy guano  S49
West Mouth Area C cemetery deposits  S57
West Mouth Area C cave entrance sequence  S61
Kain Hitam  S65
Traders’ Cave  S65
Lobang Tulang  S66
Lobang Hangus  S67

Chapter 8  The Pollen, Palynofacies, Phytolith and Wood Assemblages from the West Mouth
Chris Hunt, Lisa Kealhoffer, Rathnasiri Premathilake, Garry Rushworth,
David Gilbertson, Samantha Jones and Gill Thompson
Sections 26.1 and 26.2 (Hell Trench)  S78
Section 10.2(2000) (Area A, Block B): Monoliths 2/2-7M1 and 2/2-7M2  S78
‘Soil from around Skull at H/6 107” Niah 15-2-58’ (Hell Trench)  S78
The Deep Skull contents (Hell Trench)  S83
Exposure W/X1: Monoliths 3/2-1M and 3/2-2M (Area A)  S83
Section 2.1 (Area B)  S86
Section 5M/Z10 (edge of Area A): Monoliths 5-M1 to 5-M3  S91
Chapter 9  Stable Isotope Analysis of Shells from the West Mouth: Laboratory Procedures
Mark Stephens, James Rose, David Mattey and David Gilbertson

Chapter 14  Optical Dating of Sediments from the West Mouth: Methods
Mark Stephens, Richard Roberts and Olav Lian
Sample preparation  S99
Equivalent dose (D2) determination: methods  S100
Dosimetry  S102
Equivalent dose (D2) determination: comparison of protocols  S103

Chapter 16  The Lithic Assemblages: the Harrisson West Mouth Catalogues, the NCP Methodology and the NCP West Mouth and Lobang Hangus Catalogues
Tim Reynolds
The Harrisson West Mouth catalogues  S113
The NCP methodology and catalogues  S130

Chapter 18  The Classification Methodology Used for the Bone and Tusk Tools from the West Mouth and Lobang Hangus
Ryan Rabett

Chapter 21  Methodologies of Textile Analysis and Borneo Textile Ethnobotany
Judith Cameron
Methodologies  S251
Borneo textile ethnobotany  S252

Chapter 22  Archaeological ‘Dammar’ Resins from the West Mouth: Methodologies
Fiona Bradshaw, Ben Stern and Gill Thompson

Chapter 23  Catalogues of the Later Prehistoric Burials in the West Mouth
Lindsay Lloyd-Smith

Chapter 25  Vertebrate Fauna: Methodologies, Butchery Marks, and Biometric Data
Philip Piper and Ryan Rabett
Methodologies  S285
Butchery marks  S298
Biometric data  S319

Chapter 26  Catalogue of Epigean Bird Bones from the West Mouth and Lobang Hangus
Christopher Stimpson
Conventions  S323
Epigean birds: systematics  S324

Chapter 27  Plant Food Remains from the West Mouth: Analytical Protocols and Identification
Huw Barton, Victor Paz and Anna-Jane Carlos
Microscopic plant remains  S337
Macroscopic plant remains  S338
Contributors

Graeme Barker  
McDonald Institute for Archaeological Research,  
University of Cambridge, Downing Street,  
Cambridge, CB2 3ER, UK.  
Email: gb314@cam.ac.uk

Huw Barton  
School of Archaeology and Ancient History,  
University of Leicester, Leicester LE1 7RH, UK.  
Email: hjb15@le.ac.uk

Michael Bird  
Centre for Tropical Environmental and  
Sustainability and School of Earth and  
Environmental Sciences, James Cook University,  
PO Box 6811 Cairns, Queensland 4870, Australia.  
Email: michael.bird@jcu.edu.au

Fiona Bradshaw  
Research Laboratory for Archaeology and the  
History of Art, Dyson Perrins Building, South Parks  
Road, Oxford OX1 3QY, UK.  
Email: fiona.bradshaw@wolfson.ox.ac.uk

Fiona Brock  
Research Laboratory for Archaeology and the  
History of Art, Dyson Perrins Building, South Parks  
Road, Oxford OX1 3QY, UK.  
Email: fiona.brock@rlaha.ox.ac.uk

Judith Cameron  
Archaeology and Natural History, College of Asia  
and the Pacific, The Australian National University,  
ACT 0200 Canberra, Australia.  
Email: Judith.cameron@anu.edu.au

Anna Jane Carlos  
Archaeological Studies Program, University of the  
Philippines, Diliman, Quezon City 1101, Philippines.  
Email: carlosjaneb@yahoo.com

Franca Cole  
UCL Qatar, PO Box 25256, 2nd floor, Georgetown  
Building, Hamad bin Khalifa University, Doha,  
Qatar.  
Email: f.cole@ucl.ac.uk

Gathorne Cranbrook  
Great Glemham House, Saxmundham IP17 1LP, UK.  
Email: lordcranbrook@greatglemhamfarms.co.uk

Patrick Daly  
University Scholars Program, National University  
of Singapore, University Town, 18 College Avenue  
East, Singapore 138593.  
Email: usppd@nus.edu.sg

Chris Doherty  
Research Laboratory for Archaeology and the  
History of Art, Dyson Perrins Building, South Parks  
Road, Oxford OX1 3QY, UK.  
Email: chris.doherty@rlaha.ox.ac.uk

Alan Dykes  
School of Civil Engineering and Construction,  
Kingston University London, Penrhyn Road,  
Kingston upon Thames, Surrey KT1 2EE, UK.  
Email: A.P.Dykes@kingston.ac.uk

Lucy Farr  
McDonald Institute for Archaeological Research,  
University of Cambridge, Downing Street,  
Cambridge, CB2 3ER, UK.  
Email: lrf24@cam.ac.uk

David Gilbertson  
26 Grange Road, Teignmouth, Devon TQ14 8PB, UK.  
Email: dave.gilbertson@plymouth.ac.uk

Gavin Gillmore  
Department of Geography, Geology and  
Environment, Kingston University London, Penrhyn  
Road, Kingston upon Thames, Surrey KT1 2EE, UK.  
Email: G.Gillmore@kingston.ac.uk

John Grattan  
Geography and Earth Sciences, Aberystwyth  
University, Llandinam Building, Penglais Campus,  
Aberystwyth ST23 3DB, UK.  
Email: jpg@aber.ac.uk

Tom Higham  
Research Laboratory for Archaeology and the  
History of Art, Dyson Perrins Building, South Parks  
Road, Oxford OX1 3QY, UK.  
Email: thomas.higham@rlaha.ox.ac.uk

Chris Hunt  
School of Natural Sciences and Psychology,  
Liverpool John Moores University, Byrom Street,  
Liverpool L3 3LH, UK.  
Email: c.o.hunt@ljmu.ac.uk
Samantha Jones  
Institut Català de Paleoecologia Humana i Evolució Social, Zona Educacional 4 Campus Sescelades (Edifici W3), 43007 Tarragona, Spain.  
Email: sjones@iphes.cat

Lisa Kealhofer  
Environmental Studies and Sciences Department, Santa Clara University, 500 El Camino Real, Santa Clara CA 95953, USA.  
Email: lkealhofer@scu.edu

Helen Lewis  
School of Archaeology, University College Dublin, Belfield, Dublin 4, Ireland.  
Email: helen.lewis@ucd.ie

Olav Lian  
Department of Geography, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1F6, Canada.  
Email: olav.lian@ufv.ca

Lindsay Lloyd-Smith  
Institute for East Asian Studies, Sogang University, 35 Maekbum-ro, Mapo-gu, 121-742 Seoul, South Korea.  
Email: lloyd-smith@cantab.net

Richard Mani Banda  
Jabatan Mineral dan Geosains Malaysia, Unit Geosains, Sarawak.  
Email: dr.richardm@jmg.gov.my

Jessica Manser  
Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York NY 10010, USA.  
Email: jmm2257@nyu.edu

David Mattey  
Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.  
Email: mattey@es.rhul.ac.uk

Sue McLaren  
Department of Geography, University of Leicester, Leicester LE1 7RH, UK.  
Email: sjm11@le.ac.uk

Colin Murray-Wallace  
Centre for Archaeological Science, University of Wollongong, Wollongong NSW 2522, Australia.  
Email: cwallace@uow.edu.au

Victor Paz  
Archaeological Studies Program, University of the Philippines, Diliman, Quezon City 1101, Philippines.  
Email: victor.paz@up.edu.ph

Paul Phillips  
Environmental and Geographical Sciences, University of Northampton, Avenue Campus, St George’s Avenue, Northampton NN2 6JF, UK.  
Email: paul.phillips@northampton.ac.uk

Alistair Pike  
Department of Archaeology, University of Southampton, Highfield Road, Southampton SO17 1BF, UK.  
Email: a.w.pike@soton.ac.uk

Philip Piper  
School of Archaeology and Anthropology, Hope Building #14, The Australian National University, Canberra ACT 0200, Australia.  
Email: philip.piper@anu.edu.au

Rathnasiri Premathilake  
Institute of Archaeology, University of Kelaniya, 407 Bauddhaloka Mawatha, Colombo 07, Sri Lanka.  
Email: premathilake@hotmail.com

Brian Pyatt  
Interdisciplinary Biomedical Research Centre, School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.  
Email: brian.pyatt@ntu.ac.uk

Ryan Rabett  
School of Geography, Archaeology and Palaeoecology, Queens University Belfast, Belfast BT7 1NN, Northern Ireland, UK.  
Email: r.rabett@qub.ac.uk

Tim Reynolds  
Department of History, Classics and Archaeology, Birkbeck College, University of London, 26 Russell Square, London WC1B 5DQ, UK.  
Email: te.reynolds@bbk.ac.uk
Figures


1.1 The location of the Niah Caves. 4

1.2 The West Mouth of Niah Great Cave: plan showing the principal excavations by Tom and Barbara Harrisson. 6

1.3 Excavations of the E/A and E/B trenches in the West Mouth of Niah Great Cave in 1957. 6

1.4 The Deep Skull in situ. 7

1.5 Excavations in the West Mouth, 1958/1959. 7

1.6 The West Mouth excavations; sieving soil to collect small artefacts. 9

1.7 Excavations in the ‘frequentation zone’ in the West Mouth. 9

1.8 Looking east into the interior of the West Mouth. 10

1.9 ‘Pink and white’ sediments exposed in the Harrisson excavations in the West Mouth. 10

1.10 The archaeological reserve in the northwest corner of the West Mouth in 2000. 11

1.11 Examples of stratigraphic observations made during the original excavations. 13

1.12 A Harrisson datum concrete block in its present position. 14

1.13 The Hell Trench in 2002, showing the calculated location of the spit in which the Deep Skull was found. 14

1.14 A schematic model of the likely relationship of Section 26.1 to Harrisson spits. 15

1.15 The ‘skeleton plinth’ of Burial 84 after cleaning and recording in 2003. 17

2.1 The West Mouth of the Great Cave: (a) looking east into the West Mouth; (b) looking west out of the West Mouth; (c) the surface of the archaeological zone at the beginning of the Harrisson excavations in 1954. 20

2.2 The Harrisson excavations of the ‘frequentation zone’. 21

2.3 Bats streaming out of the Mulu Caves at dusk. 22

2.4 The pattern of earthquakes of magnitude ≥6 around Borneo from 1973 to 2003. 23

2.5 Wind directions over Borneo over the course of a year. 27

2.6 The climate of coastal north Borneo at and near Niah. 28

3.1 University of Leicester Archaeological Services (ULAS) Context sheet. 32

3.2 University of Leicester Archaeological Services (ULAS) Context list. 33

3.3 University of Leicester Archaeological Services (ULAS) Environmental Samples form. 34

3.4 University of Leicester Archaeological Services (ULAS) Small Finds sheet. 35

3.5 University of Leicester Archaeological Services (ULAS) Burial Record sheet. 36

3.6 Plan of the archaeological zone in the West Mouth of Niah Great Cave, showing the location of the NCP sections and excavations in relation to the Harrisson grid. 37

3.7 The location of the NCP sections and excavations in the Hell Trench in relation to the Harrisson grid. 38

3.8 Sampling charcoal from Section 2.1 in the West Mouth for 14C-dating. 39

3.9 Dry-sieving excavated sediments. 40

3.10 Sections 26.1 and 26.2, the northern side of the HP/6 baulk, in the Hell Trench. 41

3.11 Section 42.4, part of Section 26.2, the east-facing section of the Hell Trench adjacent to the HP/6 baulk. 42

3.12 The ‘orangutan plinth’ left by Harrisson in the northern end of the Hell Trench. 43

3.13 Section 24.1, the south-facing and northernmost section in the Hell Trench. 43

3.14 Section 3.1(2000), under the rock overhang in Area A. 44

3.15 West Mouth, Area A, Block A: Section 12.1(2000). 45

3.16 West Mouth, Area A, Section 4.1. 46

3.17 West Mouth, Area A, Section 22.7. 46

3.18 West Mouth, Area A, Section 14.1(2000). 47

3.19 West Mouth, Area B, Section 35.1. 48

3.20 West Mouth, Area A, Section 11.1(2000). 49

3.21 West Mouth, Area B, Sections 2.1, 8.1 and 13.1(2000). 50

3.22 Sections 3.1 and 3.3 at the intersection between Areas A, B and C. 51

3.23 West Mouth, Area C, Plan 7.1 of a partial skeleton on the surface of ‘von Koenigswald’s corner’. 51

3.24 West Mouth, Area C, Sections 11.1, 13.1, and 13.2. 52

3.25 West Mouth, Area C, Sections 6.1, 6.2 and 6.3. 53

3.26 West Mouth, Area C, showing the Harrisson grid plan and the areas investigated by the NCP. 54
3.27 The West Mouth, Area C, plan of the NCP excavations.
3.28 West Mouth, Area C, Sections 14.1, 46.2A, 46.2B, 46.6, and 46.7.
3.29 West Mouth, Area C: extended burial (B185) and overlying secondary jar burial (B190).
3.30 Prayer platform in the lower area of the West Mouth.
3.31 West Mouth, Area C, Trenches 1 and 3: bamboo matting associated with Burial B219 (NCP Burial B19)
3.32 West Mouth, Area C, Trench 1: Burials B190, B221 and B185.
3.33 West Mouth, Area C, Trench 4, Sections 60.1, 60.2 and 60.3.
3.34 West Mouth, Area C, extended Burial B211 (NCP Burial 11).
3.35 West Mouth, Area C, Section 41.4: possible textile 'shroud' over Burial B211.
3.36 West Mouth, Area D, Trench 1: west-facing Section 36.3.
3.37 West Mouth, Area D, Trench 1: plan of stake- and post-holes likely to be associated with birds-nest collector activities.
4.1 The Lobang Hangus entrance to the Great Cave.
4.2 The Lobang Hangus entrance at the time of the NCP excavations.
4.3 Lobang Hangus: Section 2.1, at the southern margins of the excavation.
4.4 Lobang Hangus: Sections 1.1 and 2.2.
4.5 Lobang Hangus: Sections 3.2 and 3.3.
4.6 Lobang Hangus: Section 4.3 in Test Pit B.
4.7 Lobang Hangus: Section 1.2.
4.8 Lobang Hangus: Section 3.1.
4.9 Lobang Hangus: animal bones from Test Pit A.
4.10 Kain Hitam upper cave: flowstone and exposed silts.
5.1 Schematic representation of the Late Quaternary lithostratigraphy of the northern part of the West Mouth, Niah Great Cave.
5.4 Selected sedimentological properties of Lithofacies 2C at Section 3.1(2000).
5.5 Selected sedimentological properties of Lithofacies 3 and overlying Lithofacies 4 at Sections 1.4(2000) and W/X1.
5.6 Sedimentological properties of red-brown silts and sands (Lithofacies 2) at Sections 10.1(2000) and 10.2(2000).
5.7 Photomicrographs of sediments from the West Mouth.
5.8 A simple model of the principal geomorphological processes responsible for the Late Quaternary cave entrance sequence in the West Mouth.
6.1 Micromorphological thin section #544.
6.2 Micromorphological thin section #907.
6.3 Niah West Mouth ‘ashy guano’ layer and Traders’ Cave modern wood.
6.4 Micromorphological thin section #358.
6.5 Part of micromorphological thin section #505
6.6 Micromorphological thin section #387
7.1 The coastal geography of Sundaland and the South China Sea during the Last Glacial Maximum.
7.2 Relative changes in sea-level in the South China Sea between c. 21,000 yr and the present day.
7.3 Sketch geomorphological map of the lower course of the Sungai Niah
7.4 Summary lithology and palynology of the Gan Kira and Kampong Irang cores.
7.5 Loagan Bunut and the Baram River: peat stratigraphies.
7.6 Reconstructions of the changing geography of the coast near the Great Cave of Niah.
7.7 Reconstruction of the LGM landscape off the Niah coast.
7.8 Reconstructions of the changing geography of the southern shoreline of the South China Sea and the coastal plain of northern Borneo.
8.1 Altitudinal zonation of forests in Borneo.
8.2 Zonation of mangrove forests in Borneo.
8.3 Bulk characteristics of sediments accreting at the sample sites. 155
8.4 Distribution of airfall material at the sample sites. 156
8.5 Pollen influx rates in the West Mouth. 157
8.6 Distribution of pollen rain in the West Mouth. 158
8.7 Comparison of pollen from the lining of a wasp burrow with that of the Mid Holocene sediment in which it was embedded. 159
8.8 The sampled sections showing the location of the monoliths. 161
8.9 The stratigraphic units in the West Mouth, monoliths, radiocarbon dates and thermophilous pollen tuned against the NGRIP 50-year record. 162
8.10 Possible temperature ranges indicated by the pollen assemblages from Niah Great Cave. 166
8.11 Summary pollen diagram for Niah Great Cave. 168
8.12 Pollen in surface samples from localities close to the Great Cave. 169
8.13 Summary pollen diagram from the deep borehole at Loagan Bunut. 171
8.14 Phytoolith diagram from the deep borehole at Loagan Bunut. 172
8.15 Pollen diagram from a raised peatland at Loagan Bunut. 172
9.1 The locations of the mollusc shells sampled from the Harrison Excavation Archive. 177
9.2 Shell production in a bivalve and gastropod with typical helical shell growth. 178
9.3 Natural environmental factors affecting carbon and oxygen isotopes in riverine and estuarine molluscs of the Niah River. 179
9.4 Schematic representation of δ¹⁸O and δ²H water cycling in the Niah River basin. 181
9.5 Schematic representation of δ¹³C cycling in the Niah River watershed. 181
9.6 The likely relationship of the NCP contexts and Harrison Trench X/VI. 183
9.7 Location of water samples collected from the Niah River catchment and around the Great Cave. 184
9.8 Water sampling periods at Niah for stable isotopic analysis. 186
9.9 Plot of δ¹⁸O vs. δ¹³C for water samples from the Niah River catchment. 188
9.10 Plot of δ¹⁸O vs. δ²H for Niah River waters. 188
9.11 δ¹⁸O vs. δ¹³C from growth profile analyses of individual modern shells from varying sub-environments of the Niah River catchment. 190
9.12 Comparison of modern rainfall for Niah with isotopic profiles of two modern Geloina erosa shells. 191
9.13 The δ¹⁸O and δ¹³C profiles from laser ablation analyses of Geloina erosa from successive spit-depths of Trench X/VI. 193
9.14 The δ¹⁸O and δ¹³C profiles from growth profile drilling of individual Geloina erosa shells from successive spit-depths of Trench E/G3. 193
9.15 δ¹⁸O and δ¹³C of half-shell analyses of Neritina zigzag from successive spit-depths of Trench E/A. 194
9.16 δ¹⁸O and δ¹³C of whole-shell analyses of Bellamya javanica from successive spit-depths of Trench X/VI. 194
9.17 δ¹⁸O and δ¹³C of whole-shell analyses of Bellamya javanica from NCP excavation Contexts 1015–1018. 195
9.18 δ¹⁸O and δ¹³C of half-shell analyses of Paludomus sp. from successive spit-depths of Trench E/A. 195
9.19 Bi-plot of δ¹⁸O vs. δ¹³C for whole-shell analyses of Bellamya javanica shells from the NCP excavations, Harrison Trench X/V1 and modern comparatives. 196
9.20 Laser ablation δ¹⁸O and δ¹³C profiles of three Geloina erosa shells from the Harrison Excavation Archive Trench X/V1, 0–36". 198
9.21 δ¹⁸O and δ¹³C profiles of Geloina erosa shells from Trench E/G3. 199
10.1 The relationships observed in laboratory simulations between increasing ammonia concentrations and the behaviour of beetles. 205
10.2 Investigations of radon gas in the West Mouth. 207
11.1 Relationships of species frequencies in pitfall sites. 212
11.2 TWINSPLAN analysis of pitfall data from in and in front of the West Mouth. 214
12.1 Comparison of radiocarbon ages with different pre-treatments. 224
12.2 Differences in the calendar age ranges between samples having different pre-treatments. 225
12.3 Radiocarbon ages from the younger dated contexts used in the pre-treatment experiments. 225
12.4 Bayesian age model for the Lithofacies 2 sequence in the West Mouth. 226
12.5 Bayesian model 2 for the Lithofacies 2 sequence in the West Mouth. 227
12.6 Bayesian model of ABOx-SC determinations from the Hell Trench. 227
12.7 Radiocarbon ages from HP/10(B) in the Hell Trench. 228
13.1 Uranium and U-series date profile for Deep Skull bone fragment APNIAH1. 234
13.2 Uranium and U-series date profile for Deep Skull bone fragment APNIAH2. 234
14.1 Location of samples taken for optical dating and calibrated radiocarbon dates in the sediments of the West Mouth. 237
15.1 Aspartic acid (ASP) racemization vs. δ18O of shells of Bellamya javanica from varying depths of Harrison’s Trench X/V1 and NCP Lithofacies 4. 247
16.1 Core tools from the West Mouth. 255
16.2 Miscellaneous tools and blanks from the West Mouth. 256
16.3 Flake tools from the West Mouth. 257
16.4 Miscellaneous tools from the West Mouth. 258
16.5 Miscellaneous tools from the West Mouth. 259
16.6 Partially edge-ground bifacial axe from the West Mouth. 262
16.7 Net-sinkers from Lobang Hangus. 262
16.8 Tools from Lobang Hangus. 262
16.9 Tools from Lobang Hangus. 262
17.1 Usewear on artefact NCP092 from the West Mouth, Trench HP/9A at 89.5”. 281
17.2 Usewear on artefact NCP099 from the West Mouth, Trench HO/19 at 96–99. 281
17.3 Usewear on artefact NCP028 from the West Mouth, Hell Trench, NCP Section 1.3(2000), Contexts 3132/3134. 282
17.4 Usewear on artefact NCP113 from the West Mouth, Trench E at 48–60”. 283
17.5 Usewear on artefact NCP056 from the West Mouth, Trench E at 60–72”. 283
17.6 Usewear on artefact NCP502 from the West Mouth, probably from Trench E/A4 at 64–66”. 284
17.7 Usewear on artefact NCP125 from the West Mouth, Trench E/F4 at 12–24”. 285
17.8 Usewear on artefact NCP124 from the West Mouth, Trench E/W6 at 0–24”. 286
17.9 Usewear on artefact NCP118 from the West Mouth, Trench D/E2 at 18”. 287
17.10 Usewear on artefact NCP023 from the West Mouth, Area D, Trench 1 (2017). 287
17.11 Usewear on artefact NCP001 from the West Mouth, Trench M. 289
17.12 Usewear on artefact NCP002 from the West Mouth, Trench J/H7 at 3–6”. 290
17.13 Usewear on artefact NCP005 from the West Mouth, Trench W/3 at 36–48”. 290
17.14 Usewear on artefact NCP007 from the West Mouth, Trench W/W66 at 0–24”. 291
17.15 Usewear on artefact NCP009 from Trench J/K32 at 0–6”. 292
17.16 Usewear on artefact NCP016 from the West Mouth, Trench W/E1 at 12–24”. 293
17.17 Usewear on artefact NCP017 from the West Mouth, Trench W/3 at 36–48”. 294
17.18 Usewear on artefact NCP010 from the West Mouth, Trench E/B4 at 24–36”. 294
17.19 Usewear on artefact NCP013 from the West Mouth, Trench X/VII at 24–36”. 294
17.20 Usewear on artefact NCP131 from Trench H7 at 2”. 296
18.1 A re-fitted bone tool from HO/2 102–105” and HE/2 114–117” in the Hell Trench. 303
18.2 Fragment of geoemydid plastral plate (turtle shell) from Trench Y/3 66–72” in Area A. 304
18.3 Artefact 13, a likely projectile point from Trench W5 36–48” in Area A manufactured from a tooth fragment. 306
18.4 A fragment of pig (Sus sp.) canine (tusk) with a deliberately worked edge, from Trench W/X1 60–72” in Area A. 306
18.5 Artefact 5, a bone point from Trench E/D8 12–24” in Area B. 307
18.6 The distribution pattern by class of points from Area D, compared with the distribution of un-repaired experimental and ethnographic projectiles. 308
18.7 Complete tools from Early Holocene layers in Area D, Trench 1. 310
18.8 Artefact 17 from Area D, Trench 1, Context 3014. 310
18.9 Resinous material and grass binding on Artefact 5, a fragment of a sting-ray spine. 311
18.10 Pigmentation on the basal tip of Artefact 17. 312
18.11 Artefact 16, a worked and utilized Sus sp. canine fragment from Trench E/B3(B). 313
18.12 Point-forms from Lobang Hangus compared with unrepaired experimental and ethnographic projectiles and experimental and ethnographic piercing tools. 318
18.13 Artefact 32 from Trench US/15 12–18” in Lobang Hangus, a type not referenced in the ethnographic reference collection.

18.14 Artefact 61 from Trench US/22 30–36” at Lobang Hangus, a triangular point-form.

18.15 Artefact 52 from Trench US/19 18–24” at Lobang Hangus, a ‘self-barbed’ point.

18.16 Bone-working ‘off-cut’ of a macaque femur from Trench US/14 12–18” at Lobang Hangus.

18.17 Artefact 79 from US/27 12–18” at Lobang Hangus, with manufacturing traces indicating a single-bevelled hafting surface.

18.18 Examples of split tusk implements from Lobang Hangus.

18.19 Artefact 46, a split-tusk implement from Lobang Hangus.

18.20 Artefact 76 from Trench US/26 30–36” at Lobang Hangus, a utilized Trionychidae (tortoise) fragment.

20.1 Reconstructed fragment of ‘three colour ware’ vessel from the West Mouth.

20.2 Double-spouted vessel with domed top and asymmetrical spouts from the West Mouth.

20.3 Map of the Gunung Subis, showing the locations of the caves with ceramic assemblages discussed in the chapter.

20.4 Interior and exterior of double-spouted vessel from Gan Kira.

20.5 Percentages of surface decoration types found in early, intermediate and terminal earthenware assemblages at Niah.

20.6 Diamond paddle-impressed vessel from Magala ‘E’.

20.7 Interior of moulded vessel top from Gan Kira.

20.8 Earthenware ‘kendi’ style spout from Lobang Tulang.

20.9 Fragment of bowl with moulded tab handle attached to rim.

20.10 Double-spouted vessel with bridged spouts and flat top.

20.11 Earthenware vessel handle terminating in five moulded digits.

20.12 Globular vessel with everted rim and surface decoration of carved-paddle impressed diamonds, Lobang Batu Parang.

20.13 Chronologically diagnostic earthenware vessel forms at Niah.

20.14 The process of earthenware identification at Niah.

21.1 Photograph taken during the exposure of the basket encasing the jar in Burial B198 in the West Mouth.


21.3 The open-twining technique used in the West Mouth cemetery caskets.

21.4 Detail of matting, showing the fibres radiating from the base of the basket from West Mouth Burial B60.

21.5 Matting of plant fibre in tabby or plain weave, from West Mouth Burial B113/4

21.6 Matting fragment interred with an object (grain?) in West Mouth Burial B68.

21.7 Well-preserved sample of tabby-weave matting, plaited in a balanced checker-weave with shiny (treated) surface, from West Mouth Burial B205.

21.8 Metal Age textiles of ‘birds-eye’ twill-weave recovered from the Window Ledge, Lobang Tulang.

21.9 The textiles weaves represented in the Niah assemblage.

21.10 Three different tabby weave fragments from the multiple Burial B60 in the West Mouth cemetery, all heavily impregnated with haematite.

21.11 Burial B179 in the West Mouth, one of the burials left in situ by the Harrissons.

21.12 Schematic drawing by Barbara Harrison of half-basket (2/1) weave in a textile fragment from Burial B200A.


21.15 Fragment of possible clothing found in Burial B68.

22.1 ‘Dammar torch’ excavated from the West Mouth and the sample taken for analysis.

22.2 Resinous materials from the NCP excavations in the West Mouth.

22.3 Partial chromatograms for the dammar torch sample and a reference sample (Shorea sp.).

22.4 Partial chromatogram for Sample 16a.

22.5 Partial chromatogram for Sample 19a.

23.1 Plan of all 262 features allocated burial numbers in the West Mouth.

23.2 Burial B25, a tightly flexed burial.
23.3 Burial B27, a tightly flexed burial. 380
23.4 Burial B147, a ‘seated’ burial. 381
23.5 Burial B147: fire-blackened pelvis bones and femora. 381
23.6 Burial B83, a ‘seated’ burial. 383
23.7 Burial B146, a ‘seated’ burial. 383
23.8 Burials B155 and B156, flexed burials. 384
23.9 Burial B93, flexed burial. 384
23.10 Burial B153, a ‘mutilated’ burial. 386
23.11 Burial B153, a ‘mutilated’ burial. 386
23.12 Burial B60A, an extended burial. 387
23.13 Combinations of right and left arm positions in primary burials exhibited by the extended burials in the West Mouth. 387
23.14 Burial B60B-D, a multiple burial. 389
23.15 Burial B138, a multiple burial. 389
24.1 Human skull depicting location of standard anatomical landmarks and subsets of landmarks used in the 3D analyses. 394
24.2 Upper-face shape variation on PC1 and PC2. 395
24.3 Mid-face shape variation on PC1 and PC2. 395
24.4 Multidimensional scaling analysis in 2-D performed on dental non-metric derived Smith’s Mean Measure of Divergence distance matrix. 399
24.5 Multidimensional scaling analysis in 2-D performed on cranial non-metric derived Smith’s Mean Measure of Divergence distance matrix. 399
24.6 Summary tooth size (STS) values for the two West Mouth and six comparative human samples. 400
25.1 One of the many school notebooks used for describing the fauna from the Harrisson excavations, and Tom Harrisson’s entry on one of the pages. 403
25.2 The large rock encountered in 1957 during the excavation of the E/A1 and E/A2 trenches in the West Mouth. 404
25.3 The approximate north to south profile of the ‘bone under ash layer’ in the Hell Trench based on bone fragment distribution and concentration. 406
25.4 Bone concentration in Trenches HE/10 and HE/12 (Hell Trench). 407
25.5 Partial anterior surface of a right distal humerus from the Hell Trench (H/17 at 110”), and the same bone of the modern pangolin Manis javanica. 407
25.6 Pig body part representation in the Hell Trench. 409
25.7 Cercopithecidae (monkey) body part representation in the Hell Trench and Trenches EA/1(U/R) and E/A2 (U/R). 410
25.8 The Harrisson trenches in Area A from which vertebrate fauna were analysed in the NCP project. 411
25.9 Examples of bone breakage types in Area A. 413
25.10 Degrees of abrasion in the Area A bone material. 413
25.11 A pig proximal scapula exhibiting severe abrasion and cracking. 413
25.12 Porcupine-gnawed bone fragments from Terminal Pleistocene/Early Holocene deposits in Trench X/E1 at 36–48”. 413
25.13 Suid (pig) body part representation in Area A. 414
25.14 Cercopithecidae (monkey) body part representation in Area A. 417
25.15 Cut marked bird distal humerus from Trench Y/Z1 at 12–24” in Area A. 419
25.16 Temporal variations in bone fragment numbers in Area D, Trench 1. 420
25.17 Suid (pig) body part representation in Area D, Trench 1. 421
25.18 Cercopithecidae (monkey) body part representation in Area D, Trench 1. 422
25.19 Age profiles of Early Holocene pigs at Lobang Hangus. 426
25.20 Suidae (pig) body part representation at Lobang Hangus in the Mid/Late Holocene. 428
25.21 Cercopithecidae (monkey) body part representation at Lobang Hangus in the Mid/Late Holocene. 428
25.22 Suidae (pig) body part representation at Gan Kira in the Terminal Pleistocene/Early Holocene. 430
25.23 Cercopithecidae (monkey) body part representation at Gan Kira in the Terminal Pleistocene/Early Holocene. 431
25.24 A dog lower canine from Gan Kira, Trench Y/D1 at 12–18”. 431
25.25 A comparative species area curve illustrating species richness for the different phases of site occupation at Niah.

25.26 A Cercopithecidae humerus with cut zones indicated.

25.27 A Cercopithecidae femur with cut zones indicated.

26.1 Locations of the epigean bird bone assemblages in the West Mouth.

26.2 Locations of the main epigean bird bone assemblages in Lobang Hangus.

26.3 Breakage profiles for four families in the epigean bird bone samples from the West Mouth and Lobang Hangus.

26.4 A distal humerus of a black hornbill with a perforated olecranon fossa.

26.5 NISP counts for bones of the four most abundant families of epigean birds in Area A.

26.6 NISP counts for bones of the four most abundant families of epigean birds in Lobang Hangus.

26.7 Relative frequencies of twelve skeletal elements of cave swiftlets in cultural and non-cultural lithostratigraphic units in the West Mouth.

26.8 Relative frequencies of seven identified bat taxa in five lithostratigraphic units in the West Mouth.

26.9 Relative frequencies of seven identified bat taxa in cultural and non-cultural layers from the West Mouth.

26.10 Relative frequencies of ten skeletal elements from ‘small’ and ‘large’ bat taxa in cultural and non-cultural layers from the West Mouth.

27.1 Starch granules from West Mouth sediments.

27.2 Starch granules from West Mouth sediments.

27.3 Tuber parenchyma from West Mouth sediments.

27.4 Pangium edule seeds.

27.5 Leaves and fruit of Elaeocarpus stipularis.

27.6 Leaves and fruit of Canarium indicum.

27.7 Mineralized archaeological seeds of Cucurbitaceae from West Mouth sediments.

27.8 Mineralized archaeological seeds of Asteraceae and of Poaceae from West Mouth sediments compared with modern reference material.

28.1 Major aquatic mollusc species from the Niah Caves excavations.

28.2 Major terrestrial snail species from the Niah Caves excavations.

28.9 Looking westwards out of the West Mouth entrance of Niah Great Cave.

28.10 Looking eastwards out of the Lobang Hangus entrance of Niah Great Cave.

29.3 Penan encampment in the Kelabit Highlands, Sarawak.

29.4 The entrance to Niah National Park.

29.5 The Archaeological Museum, Niah National Park.

29.6 The stalls en route to the caves, where local people sell drinks and craft products.

Figures in the Supplementary Materials

S3.1 The preliminary facies model proposed in 2000 for the archaeological zone in the West Mouth.

S3.2 Schematic representation of sedimentary units (‘lithofacies’) identified in the West Mouth in 2001.

S3.3 Pits and post-holes surrounding the pit complex in Area B.

S3.4 Plan 31.3 of NCP Burial 11 (Harrisson Burial B211).

S3.5 Section 62.4, the south-facing section of the NCP Deep Sounding in the Hell Trench.

S5.1 The topography of the western face of the guano pile in Niah Great Cave.

S5.2 Shear strength envelopes for the guano samples from the West Mouth.

S5.3 Consolidation plot for the c. 37,000–35,000 year-old guano under a 15 kPa normal load and Holocene guano under a 20 kPa load.

S5.4 Failure of an exposed vertical face through the guano.

S6.1 Sections in the West Mouth from which the principal sediment blocks were taken for the micromorphological analyses reported in Chapter 6.

S8.1 Pollen diagram from Monoliths A-M to A3M, Section 3.1(2000) in Area A.

S8.2 Palynofacies diagram from Monoliths A-M to A3M, Section 3.1(2000) in Area A.


S8.5 Phytolith diagram from Monoliths 2/2-8M4 to 2/2-8M5, Sections 1.2(2000), and 8.1(2000) in the Hell Trench.

S8.6 Phytolith diagram from Sections 26.1 and 26.2 in the Hell Trench.

S8.7 Pollen diagram from Monoliths 2/2-7M1 and 2/2-7M2 in Sections 10.1(2000) and 10.2(2000) in Area A, Block B.

S8.8 Palynofacies diagram from Monoliths 2/2-7M1 and 2/2-7M2 in Sections 10.1(2000) and 10.2(2000) in Area A, Block B.

S8.9 Pollen and palynofacies diagram from the 'Deep Skull' and from a nearby context.

S8.10 Pollen diagram from Monoliths 3/2-1M and 3/2-2M in Section W/XI.

S8.11 Phytolith diagram from Monolith 3/2-1M in Section W/XI.

S8.12 Phytolith diagram from Section 2.1 in Area B.

S8.13 Pollen diagram from Monoliths 4-1M and 4-2M in Area A, Section 10.1(2000).

S8.14 Pollen diagram from Monoliths 5-M1 to 5-M3 in Section 5M/Z10.

S8.15 Palynofacies diagram from Monoliths 5-M1 to 5-M3 in Section 5M/Z10.

S9.1 Geloina erosa shell from Harrisson Trench E/G3, 15–18”, with damaged upper layers.

S9.2 Bellamya javanica shell with a 2 mm growth profile transect cut out.

S9.3 Neritina zigzag shell and Paludomus sp. shell following cross-sectioning.

S9.4 LA-CF-IRMS analysis of Geloina erosa (sample X/V1 12–24”).

S14.1 Photomicrograph (sample #2/2-9k) showing quartz (Q) with coatings of reddened (Fe) clay and silt material.

S14.2 A typical ‘natural’ OSL decay curve and a typical SAR dose-response curve of sample #376r.

S14.3 Radial plot of $D_e$ values for eight aliquots of sample #B-1.

S14.4 $D_e$ versus preheat temperature for sample #371.

S14.5 Test-dose ratio of sensitivity vs. preheat temperature for sample #371.


S14.7 $D_e$ vs. preheat temperature for sample #376r.


S14.9 Test-dose ratio of sensitivity vs. preheat temperature for sample #376r.

S14.10 $D_e$ vs. preheat (PH) and cut-heat (CH) temperature for sample #383.


S14.12 Aliquots of sample #383 (90–125 μm) given a known laboratory beta dose to represent the surrogate ‘natural’ dose, measured with the SAR protocol.

S14.13 Six combinations of different preheat, cut-heat and hot optical was temperatures (following Choi et al. 2003, and Murray & Wintle 2003) on sample #383.

S14.14 $D_e$ for 3 × 3 mm aliquots (90–125 μm fraction) of samples #383, #384, and #11a, following the 280/220°C PH/CH protocol of Choi et al. (2003).

S14.15 Recuperation of samples #383, #11a and #384 using the Choi et al. (2003) protocol.

S14.16 Radial plot for sample #384.

S14.17 Radial plot for sample #383.

S14.18 Radial plot for sample #386r.

S14.19 Radial plot for sample #B-1.

S18.1 Measurements taken on the front section of all bone and tusk artefacts.

S18.2 The differences in the relative amounts of manufacture, use and exploitation that characterize different tool classes.

S18.3 Distribution by class of experimental bone projectiles and awls at the time of breakage/discard.

S18.4 Comparison of unrepaired experimental tools with repaired projectile points in ethnographic collections.

S23.1 Plan of all 262 features allocated burial numbers in the West Mouth.

S24.1 Human skull depicting location of standard anatomical landmarks and subsets of landmarks used in the 3D analyses.

S25.1 Examples of bone fracture surfaces exhibiting different degrees of abrasion.

S25.2 Examples of manganese oxide precipitate on bone fragments from the Niah Caves.

S25.3 Tooth-wear stages for leaf money (Presbytis sp.) lower molars M1–M3.

S25.4 Tooth-wear stages for macaque (Macaca sp.) lower molars M1–M3.

S25.5 Cut marks on a distal humerus of a macaque (Macaca fascicularis), Lobang Hangus.
Scraps marks on Lobang Hangus bone tool No.32.  
Spiral fracturing in conjunction with cut-marks on a Cercopithecidae femur from Lobang Hangus.  
Impact scar and negative flake scar on a Sus sp. tibia shaft fragment from West Mouth, Trench W/4 36–48”.
Cut marks on felid mandible probably associated with removal of the tongue, from Lobang Hangus.
Cercopithecidae humerus with cut-zones.
Sus sp. humerus with cut-zones.
A. binturong humerus with cut-zones.
Cercopithecidae radius with identified cut-zones indicated.
Sus sp. ulna with identified cut-zones indicated.
Cercopithecidae femur with identified cut-zones indicated.
Cercopithecidae tibia with identified cut-zones indicated.
Chop marks and cut-zone on a Pongo pygmaeus distal fibula from Lobang Hangus.
Cercopithecidae calcaneus with identified cut-zones indicated.
Cut marks on a Pongo pygmaeus 1st phalanx from Lobang Hangus.
Sus sp. calcaneus with identified cut-zones indicated.
Sus sp. lateral 1st phalanx with identified cut-zones indicated.
Arctictis binturong calcaneus with identified cut-zones indicated.

Tables

5.1 Glossary of micromorphological and geological terms used in Chapter 5.
5.2 Diagnostic criteria frequently observed in the West Mouth cave entrance sediment samples.
5.4 The major element chemistry and geochemical ‘chemizones’ in Section 3.1(2000) in Area A.
5.7 Microfeatures observed in the sediment thin sections from the West Mouth.
5.8 Summary of lithofacies recognized in the West Mouth, and their interpretation.
6.1 Soil micromorphology samples analysed from the West Mouth.
6.2 Soil micromorphology samples analysed from other cave entrances at Niah.
6.3 Additional block samples from the West Mouth.
6.4 Field descriptions of ‘anthropogenic’ layers in Areas A and B.
6.5 Area B pit fills.
6.6 Summary of thin section descriptions of cultural deposits in Areas A and B.
6.7 Field descriptions of ‘ashy guano’ sequences samples in Section 8.1.
6.8 Traders’ Cave: thin sections and field descriptions.
6.9 Field descriptions of cave mouth samples taken in Area A.
6.10 Field descriptions of the Area C cemetery contexts in the West Mouth.
6.11 Lobang Hangus: thin sections analysed and their field descriptions.
7.1 Radiocarbon dates from Lithofacies LB8 in borehole 2, Loagan Bunut.
7.2 Radiocarbon dates from the peat dome at Loagan Bunut.
8.1 Sediment flux in grams per year in the West Mouth.
8.2 The sedimentation zones in the West Mouth.
8.3 Comparison of pollen deposition patterns on the forest floor with those in the cave.
8.4 Summary of pollen content in droppings of the flower/fruit-eating bat (Eonycteris spelaea), insectivorous bat (Hipposiderus diadema) and swiftlet (Aerodramus maximus).
8.5 Pollen zones in the sediments of the West Mouth in approximate chronological order.
8.6 Wood identifications from the West Mouth, in approximate chronological order.
9.1 Environmental information of modern mollusc shells analysed with stable isotopes.
9.2 Results of stable isotope analyses on replicate water samples from the Niah River basin.
9.3 Stable isotopic results of waters from the Niah River catchment.
10.1 Ammonia concentrations in the northern chamber of the West Mouth measured in 2000.

10.2 Ammonia concentrations in the northern chamber of the West Mouth measured in 2002.

10.3 Radon concentrations detected in the West Mouth by individual excavators.

11.1 Location of animal collection sites within and outside the West Mouth.

11.2 Invertebrates collected from pitfall traps inside and in front of the West Mouth.

12.1 ABOx pre-treatment data for material from the West Mouth.

12.2 Radiocarbon ages from untreated, acid-base-acid and acid-base-wet oxidation with stepped combustion prepared charcoals from the West Mouth.

12.3 Radiocarbon ages from ABOx-SC prepared charcoals from the West Mouth (Harrisson Excavation Archive).

12.4 Radiocarbon determinations from burials in the West Mouth.

14.1 U, Th and K concentrations for sediment samples from the West Mouth.

14.2 Summary table of provisional optical ages for the West Mouth samples.

15.1 Aspartic acid racemization vs. $\delta^{18}O$ of shells of Bellamya javanica* from varying depths of Harrisson’s Trench X/V1 and NCP Lithofacies 4.

15.2 Aspartic acid racemization vs. $\delta^{18}O$ of shells of Bellamya javanica* from Lithofacies 4 in Area A, Block A.

16.1 Cores and core tools from the West Mouth and Lobang Hangus.

16.2 All tools from the West Mouth and Lobang Hangus entrances of Niah Great Cave.

17.1 Non-flaked lithic artefacts from the West Mouth examined for use-wear and residues.

17.2 Polished and ground stone artefacts from the West Mouth examined for use-wear and residues.

17.3 Flaked lithic artefacts from the West Mouth examined for use-wear and residues.

18.1 Classification of bone and tusk tools from the West Mouth and Lobang Hangus.

18.2 Worked bone artefacts from the Hell Trench, West Mouth.

18.3 Worked bone and tusk artefacts from Area A, West Mouth.

18.4 Worked bone artefacts from Area B, West Mouth.

18.5 Worked bone and tusk artefacts from Area C, West Mouth.

18.6 Worked bone, tusk and spine artefacts from Area D, West Mouth.

18.7 Worked bone and tusk artefacts from non-NCP locations in the West Mouth.

18.8 Worked bone and tusk artefacts from Lobang Hangus.

18.9 Bone and tusk specimens from the Niah Caves rejected as artefacts (‘pseudo-tools’).

19.1 Exotic unmodified shells recovered from the Niah Caves, categorized by habitat.

20.1 Quantification of NCP sherds from the West Mouth and Lobang Hangus entrances of Niah Great Cave.

20.2 Percentages of decoration types in the NCP sherd assemblages.

20.3 Surface decoration categories of the Niah earthenwares.

20.4 Sherd numbers and percentages of surface decoration types for the cave assemblages included in the study.

20.5 The four-phase earthenware chronology for Niah and its proposed dates.

21.1 Textile burials from the West Mouth and their associations.

21.2 Functional attributes of prehistoric cordage from West Mouth Burial B198.

21.3 Summary of the archaeological textiles recorded during the Harrisson excavations.

22.1 Resins native to Malaysia that are recorded as having been used locally and/or traded.

22.2 Descriptions and context information for the archaeological resinous samples from the West Mouth.

22.3 Taxonomy of the modern resin reference collection from Sarawak, Borneo.

23.1 The burial number series for the West Mouth.

23.2 Location and status of 262 features allocated ‘burial’ numbers and 209 ‘proper burials’ in the West Mouth.

23.3 Barbara Harrisson’s classification of burial types in the West Mouth.

23.4 Re-classification of burials in the West Mouth.

23.5 Mutilation types, their locations and depths.

23.6 Standard arm positions displayed by extended burials in the West Mouth.

23.7 Numbers of reclassified burial types in the West Mouth.

24.1 Cranial non-metric trait frequencies for two West Mouth and 21 comparative recent human samples.

24.2 Dental non-metric trait frequencies for two West Mouth and six comparative recent human samples.
25.1 Vertebrate species representation in the Hell Trench.
25.2 The NISP (Number of Identifiable Specimens), MNE (Minimum Number of Elements), MNI (Minimum Number of Individuals) and NISP/MNE ratio for pig skeletal elements from the Hell Trench.
25.3 The NISP (Number of Identifiable Specimens), MNE (Minimum Number of Elements), MNI (Minimum Number of Individuals) and NISP/MNE ratio for monkey skeletal elements from the Hell Trench.
25.4 The distribution of bones in a transect of the Area A trenches.
25.5 Identified macrovertebrate fauna from all occupation phases in Area A.
25.6 The NISP (Number of Identifiable Specimens), MNE (Minimum Number of Elements), MNI (Minimum Number of Individuals) and NISP/MNE ratio for pig skeletal elements from Area A.
25.7 The NISP (Number of Identifiable Specimens), MNE (Minimum Number of Elements), MNI (Minimum Number of Individuals) and NISP/MNE ratio for monkey skeletal elements from Area A.
25.8 Identified macrovertebrate fauna (excluding fish) from Area D.
25.9 The NISP (Number of Identifiable Specimens), MNE (Minimum Number of Elements), MNI (Minimum Number of Individuals) and NISP/MNE ratio for pig skeletal elements from Lobang Hangus.
25.10 Identified macrovertebrate fauna from Lobang Hangus.
25.11 The NISP (Number of Identifiable Specimens), MNE (Minimum Number of Elements), MNI (Minimum Number of Individuals) and NISP/MNE ratio for monkey skeletal elements from Lobang Hangus.
25.12 Terminal Pleistocene/Early Holocene macrovertebrate fauna from Gan Kira.
25.13 The NISP (Number of Identifiable Specimens), MNE (Minimum Number of Elements), MNI (Minimum Number of Individuals) and NISP/MNE ratio for pig skeletal elements from Gan Kira.
25.14 The NISP (Number of Identifiable Specimens), MNE (Minimum Number of Elements), MNI (Minimum Number of Individuals) and NISP/MNE ratio for pig skeletal elements from Gan Kira.
25.15 Measurements for the lower canine for modern and archaeological dog specimens from Southeast Asia.
25.16 The frequency of burnt bone in the West Mouth assemblages.
25.17 Frequency of Sus sp. bones in the West Mouth, Area A, and Lobang Hangus.
25.18 Frequency of butchered Cercopithecidae bones in the West Mouth, Area A, and Lobang Hangus.
25.19 Frequency of butchery marks on the distal humerus of binturong compared with suids, cercopithecids and other viverrids from Lobang Hangus.
26.1 NISP (Numbers of Identifiable Specimens) counts for epigean bird taxa from the West Mouth.
26.2 NISP (Numbers of Identified Specimens) counts for epigean bird taxa from Lobang Hangus.
26.3 Provenance and likely age of the swiftlet and bat bone assemblages from the NCP excavations in the West Mouth.
26.4 Breakage patterns in the epigean bird bone assemblages from the West Mouth and Lobang Hangus.
26.5 Specimens in the epigean bird bone assemblages from Niah Great Cave with modifications reported to be characteristic of processing by humans.
26.6 Relative abundance of wing and leg elements in four families in the West Mouth and Lobang Hangus epigean bird bone assemblages.
26.7 Absolute frequency of twelve skeletal elements of cave swiftlets in twelve contexts from the West Mouth.
26.8 Absolute frequencies of identified distal humeri from six bat taxa in Niah Great Cave.
26.9 Absolute frequencies of 10 skeletal elements of ‘small’ bat in the West Mouth.
26.10 Absolute frequency of 10 skeletal elements of ‘large’ bat taxa in the West Mouth.
27.1 Summary list of microscopic and macroscopic plant remains recovered from the West Mouth sediments, Niah Great Cave.
27.2 Type categories of starch granules defined from the West Mouth sediments.
27.3 Starch and macroscopic plant remains recovered from the Hell Trench.
27.4 Starch and macroscopic plant remains recovered from Area A.
28.1 Tom Harrisson’s ‘shell number’ system, with updated identifications presented by Medway (1960a) and this project.
28.2 Macro-land-snails identified within the Niah Caves shell assemblages.
29.1 Project themes and likely/possible participants, as set out in the original NCP proposal in 1998.
29.2 The numbers of contributors to the publication of the Niah Caves Project.
### Tables in the Supplementary Materials

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4.1</td>
<td>Radiocarbon dates from the Kain Hitam log coffins.</td>
</tr>
<tr>
<td>S5.1(1)</td>
<td>Descriptions of exposures in guano cone in the North Chamber of the West Mouth.</td>
</tr>
<tr>
<td>S5.1(2)</td>
<td>Physical and geotechnical properties of guano from the West Mouth of Niah Great Cave.</td>
</tr>
<tr>
<td>S14.1</td>
<td>Percentage weight of quartz in bulk samples from the West Mouth.</td>
</tr>
<tr>
<td>S14.2</td>
<td>The single aliquot regenerative dose (SAR) protocol used in this study with various cut-heat and hot optical wash combinations.</td>
</tr>
<tr>
<td>S14.3</td>
<td>Field dosimetry using IGRS* for sample locations in the West Mouth.</td>
</tr>
<tr>
<td>S14.4</td>
<td>Water content of sediment samples from the Late Quaternary sequence in the West Mouth.</td>
</tr>
<tr>
<td>S16.1</td>
<td>Tom Harrison’s ‘General Lithics Catalogue’.</td>
</tr>
<tr>
<td>S16.2</td>
<td>Tom Harrison’s catalogue ‘1957–58 West Mouth Lithics’.</td>
</tr>
<tr>
<td>S16.3</td>
<td>The NCP lithic database: West Mouth.</td>
</tr>
<tr>
<td>S16.4</td>
<td>The NCP lithic database: Lobang Hangus.</td>
</tr>
<tr>
<td>S21.1</td>
<td>Attributes of the textiles in the West Mouth cemetery assemblage.</td>
</tr>
<tr>
<td>S21.2</td>
<td>The principal indigenous species of rattan used by different ethnographic groups in Borneo.</td>
</tr>
<tr>
<td>S21.3</td>
<td>The principal plant fibres used for matting and textiles in Borneo.</td>
</tr>
<tr>
<td>S21.4</td>
<td>Principal dyes traditionally used by contemporary weavers in Borneo.</td>
</tr>
<tr>
<td>S22.1</td>
<td>Resin analysis: mass spectral data of identified and significant unidentified compounds.</td>
</tr>
<tr>
<td>S22.2</td>
<td>Resin analysis: possible degradation products.</td>
</tr>
<tr>
<td>S23.1</td>
<td>Summary descriptions and reclassifications of nineteen ‘flexed’ burials in the West Mouth.</td>
</tr>
<tr>
<td>S23.2</td>
<td>Summary descriptions of the four ‘seated’ burials in the West Mouth.</td>
</tr>
<tr>
<td>S23.3</td>
<td>Summary descriptions of twenty ‘mutilation’ burials in the West Mouth.</td>
</tr>
<tr>
<td>S23.4</td>
<td>Summary descriptions and reclassifications of 85 ‘extended’ burials.</td>
</tr>
<tr>
<td>S23.5</td>
<td>Eighty-five secondary burials originally classified as ‘burnt’ or ‘cremated’ burials.</td>
</tr>
<tr>
<td>S23.6</td>
<td>Summary descriptions and reclassifications of 31 ‘disturbed and doubtful’ burials from the West Mouth.</td>
</tr>
<tr>
<td>S23.7</td>
<td>Summary data on 262 re-classified features allocated burial numbers in the West Mouth.</td>
</tr>
<tr>
<td>S25.1</td>
<td>Simplified habitat characteristics of different families of vertebrate identified in the Niah Caves vertebrate faunal assemblages.</td>
</tr>
<tr>
<td>S25.2</td>
<td>Butchery cut-zones and associated muscles in primates.</td>
</tr>
<tr>
<td>S25.3</td>
<td>Butchery cut-zones and associated muscles in ungulates.</td>
</tr>
<tr>
<td>S25.4</td>
<td>Butchery cut-zones and associated muscles in carnivores.</td>
</tr>
<tr>
<td>S25.5</td>
<td>Butchered mandibular fragments and cut-zone coding.</td>
</tr>
<tr>
<td>S25.6</td>
<td>Butchered maxilla and cranial fragments and cut-zone coding.</td>
</tr>
<tr>
<td>S25.7</td>
<td>Butchered vertebra and scapula fragments and cut-zone coding.</td>
</tr>
<tr>
<td>S25.8</td>
<td>Butchered rib fragments and cut-zone coding.</td>
</tr>
<tr>
<td>S25.9</td>
<td>Butchered humerus fragments and cut-zone coding for primates.</td>
</tr>
<tr>
<td>S25.10</td>
<td>Butchered humerus fragments and cut-zone coding for ungulates.</td>
</tr>
<tr>
<td>S25.11</td>
<td>Butchered humerus fragments and cut-zone coding for carnivores.</td>
</tr>
<tr>
<td>S25.12</td>
<td>Butchered humerus fragments and cut-zone coding for low incidence taxa.</td>
</tr>
<tr>
<td>S25.13</td>
<td>Butchered radius and ulna fragments and cut-zone coding for primates.</td>
</tr>
<tr>
<td>S25.14</td>
<td>Butchered radius and ulna fragments with cut-zone coding for ungulates (suids) and carnivore (viverrids).</td>
</tr>
<tr>
<td>S25.15</td>
<td>Butchered pelvic fragment and cut-zone code for Sus sp.</td>
</tr>
<tr>
<td>S25.16</td>
<td>Butchered femur fragments and cut-zone coding for primates.</td>
</tr>
<tr>
<td>S25.17</td>
<td>Butchered femur fragments and cut-zone coding for carnivores.</td>
</tr>
<tr>
<td>S25.18</td>
<td>Butchered femur fragments and cut-zone coding for low incidence taxa.</td>
</tr>
<tr>
<td>S25.19</td>
<td>Butchered tibia and fibula fragments and cut-zone coding for primates.</td>
</tr>
<tr>
<td>S25.20</td>
<td>Butchered tibia and fibula fragments and cut-zone coding for ungulates.</td>
</tr>
<tr>
<td>S25.21</td>
<td>A butchered tibia fragment with possible cut-zone code for Manis javanica.</td>
</tr>
<tr>
<td>S25.22</td>
<td>Butchered extremities and cut-zone coding for primates.</td>
</tr>
<tr>
<td>S25.23</td>
<td>Butchered extremities (tarsal, astragalus, calcaneus) and cut-zone coding for ungulates (suids).</td>
</tr>
</tbody>
</table>
S25.24 Butchered extremities (metapodia and phalanges) and cut-zone coding for ungulates (suids).  S316
S25.25 Butchered extremities and cut-zone coding for carnivores.  S316
S25.26 Indeterminate butchered fragments.  S318
S25.27 The length and breadth measurements of the maxillary and mandibular pig teeth from Lobang Hangu Terminal Pleistocene deposits.  S319
S25.28 The length and breadth measurements of the maxillary and mandibular pig teeth from Gan Kira Early Holocene deposits.  S321
S25.29 The length and breadth measurements of maxillary and mandibular pig teeth from Gan Kira Metal Age deposits.  S322
S26.1 Provenance, dating and description of specimens assigned to the Accipitridae.  S324
S26.2 Provenance, dating and description of specimens assigned to the bathawk.  S325
S26.3 Provenance, dating and description of specimens assigned to the Spizaetus sp. hawk eagles.  S326
S26.4 Provenance, dating and description of specimens assigned to the Brahminy kite.  S327
S26.5 Provenance, dating and description of specimens assigned to the crested goshawk.  S327
S26.6 Provenance, dating and description of specimens assigned to the grey-faced buzzard hawk.  S328
S26.7 Provenance, dating and description of specimens assigned to the Indian black eagle.  S328
S26.8 Provenance, dating and description of specimens assigned to the crested serpent eagle.  S329
S26.9 Provenance, dating and description of specimens assigned to Arborophila sp.  S329
S26.10 Provenance, dating and description of specimens assigned to ‘intermediate’ Lophura sp.  S329
S26.11 Provenance, dating and description of specimens assigned to the crestless fireback.  S329
S26.12 Provenance, dating and description of specimens assigned to the crested fireback.  S330
S26.13 Provenance, dating and description of specimen assigned to the bay owl.  S331
S26.14 Provenance, dating and description of specimen assigned to the Strigidae.  S331
S26.15 Description of specimen assigned to Bubo sp.  S331
S26.16 Provenance, dating and description of specimens assigned to the barred eagle owl.  S331
S26.17 Provenance, dating and description of specimens assigned to the buffy fish owl.  S332
S26.18 Provenance, dating and description of specimens assigned to the brown wood owl.  S332
S26.19 Provenance, dating and description of specimens assigned to the Bucerotidae.  S333
S26.20 Provenance, dating and description of specimens assigned to the bushy-crested hornbill.  S333
S26.21 Provenance, dating and description of specimens assigned to the wrinkled hornbill.  S333
S26.22 Provenance, dating and description of specimens assigned to the wraithed hornbill.  S333
S26.23 Provenance, dating and description of specimens assigned to Anthracoceros sp.  S334
S26.24 Provenance, dating and description of specimens assigned to the black hornbill.  S334
S26.25 Provenance, associated dating and description of specimen assigned to the Sunda pied hornbill.  S334
S26.26 Provenance, dating and description of specimens assigned to Buceros sp.  S335
S26.27 Provenance, dating and description of specimens assigned to the dusky munia.  S336
S26.28 Provenance, dating and description of specimens assigned to Cissa sp.  S336
S26.29 Provenance, associated dating and description of specimen assigned to the green magpie.  S336
Preface and Acknowledgements

This book is the companion volume to Rainforest Foraging and Farming in Island Southeast Asia: the Archaeology of the Niah Caves, Sarawak. Together, the two books describe the most significant results of the Niah Caves Project, an archaeological investigation of several of the entrances of the Niah cave complex in Sarawak, east Malaysia, that began in 2000 and which, in terms of studies of the finds from both the NCP excavations and those by Tom and Barbara Harrisson in the 1950s and 1960s, has continued ever since. The caves, which honeycomb the Gunung Subis limestone massif close to the northern shoreline of Sarawak, nowadays within the Niah National Park, are the home to huge numbers of swiftlets and bats, the former providing nests that are collected for the lucrative trade in Chinese birds-nest soup, the latter providing guano that is collected under licence by local farmers as fertilizer. The caves have also been the subject of archaeological interest since the mid 19th century, when the naturalist Alfred Russel Wallace visited Sarawak in 1855 to collect biological specimens and reported their likely significance for anthropological research to Charles Darwin and Thomas Huxley. It was the Harrisson excavations, however, that brought the caves to international attention, in particular their discovery in 1958 in the West Mouth of the Great Cave of the so-called ‘Deep Skull’, the skull of an adult female of modern physical type which they suggested was probably some 40,000 years old on the basis of a radiocarbon date of that age on charcoal that they had collected the previous year from approximately the same depth. The date made the Deep Skull the oldest modern human fossil known at that time anywhere in the world. The Harrisson excavations also indicated that the West Mouth was used for human occupation and burial from the time of the ‘Deep Skull’ more or less to the present day, and they found further evidence for human settlement and/or burial of different periods of the past in the other entrances of the Great Cave and other caves elsewhere in the Gunung Subis. The Harrisson work gave the caves iconic status in the archaeology of Island Southeast Asia.

For a number of reasons the Harrisons were never able to publish their excavations in final form, and despite the many interim papers they published, some of their discoveries, stratigraphic findings, and interpretations were controversial. One criticism was that, given the fact that caves frequently have complex dipping deposits, the excavation method common at that time, of removing sediment in arbitrary ‘spits’ or horizontal slices, might have mixed together material of different ages. Was the Deep Skull really as old as Tom Harrisson claimed? In the 1970s the Malaysian archaeologist Zuraina Majid conducted further small-scale excavations in the West Mouth that helped clarify the Niah sequence, but significant uncertainties remained. This was the context for the new project. The main fieldwork took place between 2000 and 2004 and analytical work has continued ever since, focussed both on materials from the new fieldwork and the rich assemblage of archaeological finds – which include animal bones, human bones, shells, stone tools, bone tools, pottery, textiles, beads and resins – from the previous excavations.

Altogether over 70 researchers, mostly archaeologists and geographers, have been involved in the project, a good example of the rich inter-disciplinarity that increasingly has to be involved in the archaeological study of the human past, especially the deep past. The first NCP volume, Rainforest Foraging and Farming in Island Southeast Asia: the Archaeology of the Niah Caves, Sarawak, integrated the results of their endeavours into the story of human activity in the caves from about 50,000 years ago to the present, and how that story contributes to our understanding of big questions about the history of the entire region of Southeast Asia, from the mainland to the borders with Australia: when did modern humans arrive? what strategies did such people, long before the invention of farming, develop so that they could survive and prosper in the rainforests of lowland Borneo? and when did farming, especially the rice farming that is so characteristic of the region today, begin, and why did it begin when it did? The purpose of the present volume is to present the detailed information on which the arguments in the first volume are based. The studies incorporate both the new materials we collected in our fieldwork and the materials in the Harrisson Excavation Archive (mostly in Sarawak Museum in Kuching).

Following the two opening chapters setting the scene in terms of the archaeological context as we encountered it in 2000 and the present-day landscape against which our reconstructions of past landscapes
can be compared (Section I Introduction, Chapters 1 and 2), the book is divided into five main sections of associated material: an account of the NCP fieldwork (Section II Field Studies, Chapters 3–6); studies of past climate and vegetation history, and of the present-day cave environment (Section III Environment, Chapters 7–11); approaches to establishing chronologies (Section IV Dating, Chapters 12–15); analyses of artefacts – stone, bone and tusk tools, worked shell, ceramics, textiles, and resins (Section V Material Culture, Chapters 16–22); and analyses of biological materials – human bones, animal and bird bones, plants remains and molluscs (Section VI Bioarchaeology, Chapters 23–28). A final chapter reflects on how the project developed, what it achieved, and the importance of the Niah Caves for world heritage (Section VII Retrospect, Chapter 29). The data presented in these chapters are enormously rich, complex, and drawn from several disciplines, but we hope that the reader will agree with the conclusion offered at the end of this study, that the Niah National Park and the awe-inspiring caves that are its centrepiece have “unique potential to tell the story of the rainforest, and of people’s lives in it, from the first human visitors to Island Southeast Asia to the complexities and challenges of managing the world’s rainforests in the future”.

The chronological framework of the c. 50,000-year human and ecological history of the caves set out in the two volumes is from radiocarbon (14C) dating of charcoal and other organic materials, in particular from a programme of AMS (small sample) dating undertaken by the University of Oxford’s Radiocarbon Accelerator Unit in support of the Niah Caves Project. For consistency, all dates in the text are cited as conventional uncalibrated radiocarbon dates before the present (‘bp’) and then as calibrated dates in calendar years (‘cal. yr BP’) at a 2σ date range, using the INTCAL09 calibration curve (Reimer et al. 2009). The accumulated 14C dates available for the caves, from dates obtained by Tom Harrisson in the 1950s early in the history of the method to the Oxford series, are set out in the Appendix.

The permit for the Niah Caves Project was granted by the State Planning Unit of the Chief Minister’s Department of Sarawak, sponsored by Sarawak Museum, and particular thanks are due to Haji Sanib Haji bin Said (Director of Sarawak Museum during the fieldwork and initial laboratory work) and Ipoi Datan (then Curator of Archaeology and Deputy Director, and latterly Director) for their enthusiastic support of the project throughout its development. GB would also like to acknowledge the patience, goodwill and cooperation of the many contributors to this volume, and their forbearance with what has often been a heavy editorial hand in shaping their many contributions into what we hope is a balanced, connected and readable narrative. He would also like to thank his co-editor LF for her Herculean efforts in preparing the illustrative material for the volume, a task that involved lengthy excavation of the archive record and cross-referencing the original section and plan drawings with contributors’ texts and illustrations. We would both like to acknowledge the commitment and skill of Ben Plumridge in all aspects of the design and production of the final text.

Full acknowledgements to the many funding agencies that supported the fieldwork and individual researchers are set out in the Acknowledgements prefacing Volume One, and in this volume individual contributors also acknowledge their funding support at the end of their respective chapters, but the principal funding for the NCP fieldwork and ensuing laboratory studies, including the doctoral research of Lindsay Lloyd-Smith on the burials (Chapter 23) and Franca Cole on the pottery (Chapter 20), and the post-doctoral studies by Philip Piper and Ryan Rabett of the vertebrate fauna (Chapter 25) and by Huw Barton of the lithic residues and starches (Chapters 17 and 27) was provided by the UK Arts and Humanities Research Board and its successor the Arts and Humanities Research Council, as was a comparative study of Gua Sireh lithics by Tim Reynolds informing his work on the Niah lithics (Chapter 16). GB would like to express his particular gratitude to the AHRC for its support for the project.

A huge number of people have supported the project and its many contributors since 2000, but we know that none of them will begrudge three in particular being identified for special mention: Tom Harrisson, Barbara Harrisson, and Edmund Kurui. The archaeology of the Niah Caves will forever be linked in popular and scholarly imaginations with the name of Tom Harrisson, but the contribution of Barbara Harrisson (who died peacefully at the age of 93 in December 2015) was at least as important. As GB wrote in Volume One, “the extraordinary contribution of the archaeology of the Niah Caves to human history in Island Southeast Asia is as much her story as Tom’s”. The NCP field team also owes a particular debt of gratitude to the late Assistant Curator Edmund Kurui, who worked with the field teams each season: he solved every logistical problem minor or major, carried immense loads to and from the caves seemingly without effort, was a constant source of fun, and kept us safe no matter how incompetent we must have seemed. This book is dedicated to his memory with enormous affection and gratitude.

Graeme Barker and Lucy Farr
Cambridge May 2016